Dehm, G.: Struktur und Nano-/Mikromechanik von Materialien. Vorstandssitzung des Stahlinstituts VDEh und der Wirtschaftsvereinigung Stahl, Düsseldorf, Germany (2013)
Kirchlechner, C.; Liegl, W.; Motz, C.; Dehm, G.: X-ray μLaue: A novel view on fatigue damage at the micron scale. ECI on Nanomechanical Testing 2013, Olhão (Algarve), Portugal (2013)
Kirchlechner, C.; Motz, C.; Dehm, G.: A novel view on fatigue damage at the micron scale by X-ray µLaue diffraction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Marx, V. M.; Kirchlechner, C.; Cordill, M. J.; Dehm, G.: Deformation behavior of a Cr interlayer buried under Cu films on polyimide. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Dehm, G.: Prospects and experimental constraints of nano/micro-mechanical testing in materials science. GDRiCNRSMecano General Meeting, Ecole des Mines, Paris, France (2012)
Rashkova, B.; Moser, G.; Felber, H.; Grosinger, W.; Zhang, Z.; Motz, C.; Dehm, G.: A Novel Preparation Route to Obtain Micro-Bending Beams for In-situ TEM Studies. 9th Multinational Microscopy Conference 2009, Institute for Electron Microscopy Graz University of Technology , Graz, Austria (2009)
Bellón Lara, B.; Lu, W.; Fang, X.; Dehm, G.; Ramachandramoorthy, R.: Effect of Defects on the Dynamic Compression of Strontium Titanate Micropillars. ECI Nanomechanical Testing in Materials Research and Development IX, Sicily, Italy (2024)
Ding, K.; Kalácska, S.; Sharma, A.; Jain, M.; Koelmans, W.; Schürch, P.; Dehm, G.; Michler, J. K.; Ramachandramoorthy, R.: Copper micro-honeycomb architectures: fabrication, characterization and high strain rate testing. ECI Nanomechanical Testing in Materials Research and Development IX, Giardini Naxos, Messina (Sicily), Italy (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…