Neugebauer, J.; Janßen, J.; Körmann, F.; Hickel, T.; Grabowski, B.: Exploration of large ab initio data spaces to design materials with superior mechanical properties. Physics and Theoretical Division Colloquium, Los Alamos, NM, USA (2019)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Modelling electrochemical solid/liquid interfaces by first principles calculations. 19th International Workshop on Computational Physics and Material Science: Total Energy and Force Methods, ICTP, Trieste, Italy (2019)
Ikeda, Y.; Körmann, F.; Neugebauer, J.: Impact of chemical compositions and interstitial alloying on the stacking fault energy of CrMnFeCoNi-based HEAs from first principles. The 2nd International Conference on High-Entropy Materials , Jeju, South Korea (2018)
Neugebauer, J.: Exploration of large ab initio data spaces to design structural materials with superior mechanical properties. Multiscale Materials Modeling (MMM 2018) Conference, Osaka, Japan (2018)
Neugebauer, J.: Fundamental compositional limitations in the thin film growth of metastable alloys. 3rd Conference on Advanced Functional Materials (AFM2018), Vildmarkshotellet Kolmården, Norrköping, Sweden (2018)
Neugebauer, J.: Modelling thermodynamics and kinetics of general grain boundaries: Challenges and successes. Thermec 2018 Conference, Paris, France (2018)
Neugebauer, J.: First-principles approaches for charged defects in low dimensional systems. Conference on Physics of Defects in Solids, Trieste, Italy (2018)
Neugebauer, J.: Understanding fundamental doping and stoichiometry limits in semiconductors by ab initio modelling. EDS 2018 Conference, Thessaloniki, Greece (2018)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. CALPHAD XLVII Conference, Querétaro, México (2018)
Neugebauer, J.: Machine learning as tool to enhance ab initio based alloy design. Workshop: “Machine learning and data analytics in advanced metals processing", Manchester, UK (2018)
Neugebauer, J.: From electrons to the design of structurally complex materials. SFB ViCoM conference EPT 2018: From electrons to phase transitions, Vienna, Austria (2018)
Neugebauer, J.: Exploration of Large Ab Initio Data Spaces to Design Structural Materials with Superior Mechanical Properties. Hume-Rothery Award Symposium, TMS 2018, Phoenix, AZ, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…