Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability, and Selectivity Investigations. Electrochemistry 2014, Mainz, Germany (2014)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability, and Selectivity Investigations. 247th ACS National Meeting, Dallas, TX, USA (2014)
Cherevko, S.; Topalov, A. A.; Žeradjanin, A. R.; Mayrhofer, K. J. J.: Coupling of electrochemistry and inductively plasma - Mass spectroscopy: Investigation of the noble metals corrosion. 59th International Conference on Analytical Sciences and Spectroscopy(ICASS)
, Mont-Tremblant, Canada (2013)
Žeradjanin, A. R.: Impact of the spatial distribution of morphological patterns on the efficiency of electrocatalytic gas evolving reactions. Seminar at Serbian Chemical Society, Belgrade, Serbia (2013)
Topalov, A. A.; Cherevko, S.; Žeradjanin, A. R.; Mayrhofer, K. J. J.: Stability of Electrocatalyst Materials – A Limiting Factor for the Deployment of Electrochemical Energy Conversion? Third Russian-German Seminar on Catalysis “Bridging the Gap between Model and Real Catalysis. Energy-Related Catalysis”, Burduguz, Lake Baikal, Russia (2013)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 Reduction A Combinatorial High-Throughput Approach for Catalytic Activity, Stability and Selectivity Investigations. International Symposium on Electrocatalysis: Explorations of the Volcano Landscape, Whistler, BC, Canada (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.