Guo, Y.; Jia, L.; He, J.; Zhang, S.; Li, Z.; Zhang, H.: Interplay between eutectic and dendritic growths dominated by Si content for Nb–Si–Ti alloys via rapid solidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME 144 (6), 061007 (2022)
Guo, Y.; Hu, J.; Han, Q.; Sun, B.; Wang, J.; Liu, C.: Microstructure diversity dominated by the interplay between primary intermetallics and eutectics for Al–Ce heat-resistant alloys. Journal of Alloys and Compounds 899, 162914 (2022)
He, J.; Wu, X.; Guo, Y.; Makineni, S. K.: On the compositional and structural redistribution during partial recrystallisation: a case of σ-phase precipitation in a Mo-doped NiCoCr medium-entropy alloy. Scripta Materialia 194, 113662 (2021)
Guo, Y.; He, J.; Lu, W.; Jia, L.; Li, Z.: The evolution of compositional and microstructural heterogeneities in a TaMo0.5ZrTi1.5Al0.1Si0.2 high entropy alloy. Materials Characterization 172, 110836 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…