Friák, M.; Tytko, D.; Holec, D.; Choi, P.-P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J.: Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New Journal of Physics 17 (9), 093004 (2015)
Kim, J.-H.; Kim, B. K.; Kim, D.-I.; Choi, P.-P.; Raabe, D.; Yi, K.-W.: The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700 °C for advanced thermal power plant applications. Corrosion Science 96, pp. 52 - 66 (2015)
Herbig, M.; Choi, P.-P.; Raabe, D.: Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, pp. 32 - 39 (2015)
Tytko, D.; Choi, P.-P.; Raabe, D.: Thermal dissolution mechanisms of AlN/CrN hard coating superlattices studied by atom probe tomography and transmission electron microscopy. Acta Materialia 85, pp. 32 - 41 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…