Zaefferer, S.: An overview on techniques for high spatial resolution measurements of plastic and elastic strain by EBSD and related techniques. RexGG pre-conference workshop, Wollongong, Australia (2013)
Zaefferer, S.; Konijnenberg, P. J.: Advanced analysis of 3D EBSD data obtained from FIB-EBSD tomography. RexGG pre-conference workshop, Wollongong, Australia (2013)
Zaefferer, S.: An overview on techniques for high spatial resolution measurements of plastic and elastic strain by EBSD and related techniques. MicroCar 2013, Leipzig, Germany (2013)
Schemmann, L.; Zaefferer, S.: First experiences using a low-energy WDX spectrometer (LEXS) on a FEG-SEM for carbon determination on a martensitic steel. EMAS 2013, Porto, Portugal (2013)
Schemmann, L.; Zaefferer, S.; Raabe, D.: Influence of the inheritance of chemical elements on the transformation behaviour during intercritical annealing of DP steel strips. Euromat 2013, Sevilla, Spain (2013)
Zaefferer, S.: Techniques and application of 3D orientation microscopy based on EBSD tomography. GN-MEBA (groupement nationale de microscopie electronique a balayage) 2013, Paris, France (2013)
Zaefferer, S.: Combined Application of EBSD and ECCI for Crystal Defect Observation in Bulk Samples. GN-MEBA (groupement nationale de microscopie electronique a balayage) 2013, Paris, France (2013)
Zaefferer, S.; Elhami, N. N.: Theory and application of electron channelling contrast imaging (ECCI) of defects in metals. RMS EBSD 2013, Oxford, UK (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.