International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.
In AM, parts are built from layer by layer fusion of raw material (eg. wire, powder etc.). Such layer by layer application of heat results in a time-temperature profile which is fundamentally different from any of the contemporary heat treatments.
Previous work in the group has established that this unique thermal profile can be exploited for microstructural modifications (eg. clustering, precipitation) during manufacturing. The aim of this work is to develop a fundamental understanding of such a strongly non-linear, peak-like thermal history on the precipitation kinetics.
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…