Todorova, M.; Neugebauer, J.: Extending the Concept of Semiconductor Defect Chemistry to Electro Chemistry: A Novel Approach to Construct ab Initio Electrochemical E/pH Diagrams. 216th ECS Meeting, Vienna, Austria (2009)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: Considerations on the magnetic contribution to the free energy of Fe and related alloys. MCA-Fe. International workshop "Modern computational approaches in iron based alloys”, Ekaterinburg, Russia (2009)
Neugebauer, J.: Computing the free energy: Possibilities, challenges and limitations of present day ab initio techniques. Workshop: “Modern computational approaches in iron based alloys”, Ekaterinburg, Russia (2009)
Dick, A.; Hickel, T.; Neugebauer, J.: Thermodynamics of high-Mn steels from ab initio theory. Workshop of the SFB761 "Steel - ab initio", Salzgitter, Germany (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. 1st International Conference on Material Modeling, Dortmund, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. 1st International Conference on Material Modelling, Dortmund, Germany (2009)
Hickel, T.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Esomat 2009. The 8th European Symposium on Martensitic Transformations, Prague, Czech Republic (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Euromat 2009, Glasgow, UK (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Investigation of solid solution strengthening by density functional theory. EUROMAT 2009, Glasgow, Scotland, UK (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C–C elastic interactions on the structural stability of dilute Fe–C solid solutions. EUROMAT 2009, Glasgow, UK (2009)
Holec, D.; Friak, M.; Dlouhy, A.; Neugebauer, J.: Ab initio search for the NiTi ground state with shape-memory ability. ESOMAT 2009, Prague, Czech Republic (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Investigation of solid solution strengthening by density functional theory. 11-th National Congress on Theoretical and Applied Mechanics, Borovets, Bulgaria (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…