Haghighat, S. M. H.; Welsch, E. D.; Gutiérrez-Urrutia, I.; Roters, F.; Raabe, D.: Mesoscale modeling of dislocation mechanisms and the effect of nano-sized carbide morphology on the strengthening of advanced lightweight high-Mn steels. MMM2014, 7th International Conference on Multiscale Materials Modeling
, Berkeley, CA, USA (2014)
Roters, F.; Diehl, M.; Shanthraj, P.; Zambaldi, C.; Tasan, C. C.; Yan, D.; Raabe, D.: Simulation analysis of stress and strain partitioning in dual phase steel based on real microstructures. MMM2014, 7th International Conference on Multiscale
Materials Modeling
, Berkeley, CA, USA (2014)
Roters, F.; Steinmetz, D.; Wong, S. L.; Raabe, D.: Crystal Plasticity Implementation of an Advanced Constitutive Model Including Twinning for High Manganese Steels. MSE 2014
, Darmstadt, Germany (2014)
Haase, C.; Barrales-Mora, L. A.; Roters, F.; Molodov, D. A.; Gottstein, G.: Tailoring the Mechanical Properties of a Twinning-Induced Plasticity Steel by Retention of Deformation Twins During Heat Treatment. 2nd International Conference High Manganese Steel, HMnS 2014
, Aachen, Germany (2014)
Roters, F.: Modelling plasticity in forming processes. 1st International Workshop on Software Solutions for Integrated Computational Materials Engineering (ICME)
, Aachen/Rolduc, The Netherlands (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. IUTAM Symposium on Connecting Multiscale Mechanics to Complex Material Design, Evanston, IL, USA (2014)
Enax, J.; Fabritius, H.-O.; Roters, F.; Raabe, D.; Epple, M.: Synthetic dental composite materials inspired by the hierarchical organization of shark tooth enameloid. Third winter school within the DFG priority programme 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials", Potsdam, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…