Winning, M.; Brahme, A.; Raabe, D.: Prediction of cold rolling textures of steels using an artificial neural network. Computational Materials Science 46, pp. 800 - 804 (2009)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. Materials Science Forum 558 / 559, pp. 1035 - 1042 (2007)
Brahme, A.; Winning, M.; Raabe, D.: Texture Component Model for Predicting Recrystallization Textures. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Brahme, A.: Brief Introduction to Cellular Automaton and Monte Carlo Method. MPIE inter-departmental tutorial day(s) 2008, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2008)
Winning, M.; Raabe, D.; Brahme, A.: A texture component model for predicting recrystallization textures. The Third International Conference on Recrystallization and Grain Growth, Jeju Island, South Korea (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.