Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo simulations and ab initio studies of nano-precipitation in ferritic steels. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Tillack, N.; Yates, J. R.; Roberts, S. G.; Hickel, T.; Drautz, R.; Neugebauer, J.: First-Principles Investigations of ODS Steels. Ab initio Description of Iron and Steel: Thermodynamics and Kinetics, Tegernsee, Germany (2012)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Psi-k/CECAM/CCP9 Biennial Graduate School in Electronic-Structure Methods, Oxford, UK (2011)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Ruhr-Universität Bochum, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio and kinetic Monte-Carlo study of nano-precipitate nucleation and growth in ferritic steels. Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modelling, Bochum, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo and ab initio study of nano-precipitates and growth in ferritic steels. Ab Initio Description of Iron and Steel: Mechanical Properties, Tegernsee, Germany (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Combined ab initio studies and kinetic Monte Carlo simulations of nano-precipitation in ferritic steels. Summer School: Computational Materials Science, San Sebastian, Spain (2010)
Tillack, N.: Chemical Trends in the Yttrium-Oxide Precipitates in Oxide Dispersion Strengthened Steels: A First-Principles Investigation. Master, Ruhr-Universität Bochum, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…