Raabe, D.; Roters, F.: Using texture components in crystal plasticity finite element simulations. International Journal of Plasticity 20, pp. 339 - 361 (2004)
Roters, F.: Simulation der Umfornmung von metallischen Werkstoffen nach der Texturkomponenten-Kristallplastitizitäts-FEM. Simulation, pp. 50 - 53 (2003)
Roters, F.: A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening. Physica Status Solidi (b), pp. 68 - 74 (2003)
Raabe, D.; Zhao, Z.; Park, S. J.; Roters, F.: Theory of orientation gradients in plastically strained crystals. Acta Materialia 50 (2), pp. 421 - 440 (2002)
Karhausen, K. F.; Roters, F.: Development and application of constitutive equations for the multiple-stand hot rolling of Al-alloys. Journal of Materials Processing Technology 123, pp. 155 - 166 (2002)
Raabe, D.; Roters, F.; Zhao, Z.: Texture component crystal plasticity finite element method for physically-based metal forming simulations including texture update. Proc. 8th Int. Conf. on Aluminium Alloys, pp. 31 - 36 (2002)
Roters, F.; Zhao, Z.: Application of the texture component crystal plasticity finite element method for deep drawing simulations - A comparison with Hill’s yield criterion. Advanced Engineering Materials 4, pp. 221 - 223 (2002)
Roters, F.; Raabe, D.; Gottstein, G.: Work hardening in heterogeneous alloys - A microstructural approach based on three internal state variables. Acta Materialia 48 (17), pp. 4181 - 4189 (2000)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…