Spatschek, R. P.; Eidel, B.: Driving forces for interface kinetics and phase field models. International Journal of Solids and Structures 50 (14-15), pp. 2424 - 2436 (2013)
Hüter, C.; Boussinot, G.; Brener, E. A.; Spatschek, R.: Solidification in syntectic and monotectic systems. Physical Review E 86 (2), pp. 021603-1 - 021603-7 (2012)
Guo, W.; Spatschek, R.; Steinbach, I.: An analytical study of the static state of multi-junctions in a multi-phase field model. Physica D 240 (4-5), pp. 382 - 388 (2011)
Hüter, C.; Boussinot, G.; Brener, E. A.; Spatschek, R. P.: Isothermal solidification in peritectic systems. In: Proceedings of the 2nd High Mangenese Steels Conference 2014 (2nd HMnS) (Eds. Bleck, W.; Raabe, D.). 2nd High Mangenese Steels Conference 2014 (2nd HMnS), Aachen, Germany, August 31, 2014 - September 04, 2014. (2014)
Fleck, M.; Brener, E. A.; Spatschek, R. P.; Eidel, B.: Elastic and plastic effects on solid-state transformations: A phase field study. International Journal of Materials Research 101 (4), pp. 462 - 466 (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…