Vatti, A. K.; Todorova, M.; Neugebauer, J.: Formation Energy of Halide ions (Cl/Br/I) in water from ab-initio Molecular Dyna. Psi-k 2015 Conference, San Sebastián, Spain (2015)
Neugebauer, J.: Quantum-mechanical approaches to address the structural and thermodynamic complexity of engineering materials. Swedish Chemical Society, Kalmar, Sweden (2015)
Neugebauer, J.: Understanding the fundamental mechanisms behind H embrittlement: An ab initio guided multiscale approach. Colloquium UCB Vancouver, Vancouver, Canada (2015)
Neugebauer, J.: Vacancies in fcc metals: Discovery of large non-Arrhenius effects. The 5th Sino-German Symposium Thermodynamics and Kinetics of Nano and Mesoscale Materials and Their Applications, Changchun, China (2015)
Neugebauer, J.: Ab initio thermodynamics: A novel route to design materials on the computer. Colloquium at Universität Marburg, Marburg, Germany (2015)
Neugebauer, J.: Understanding the fundamental mechanisms behind H embrittlement: An ab initio guided multiscale approach. International Workshop MoD-PMI , Marseille, France (2015)
Neugebauer, J.: Materials design based on predictive ab initio thermodynamics. Colloquium at Lawrence Livermore National Lab, Livermore, CA, USA (2015)
Dutta, B.; Körmann, F.; Hickel, T.; Ghosh, S.; Sanyal, B.; Neugebauer, J.: The Itinerant Coherent Potential Approximation for phonons: role of fluctuations for systems with magnetic and chemical disorder. Materials Theory Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…