Spiegel, M.: Corrosion protection and electronic conductivity: Spinel forming stainless steels as CCC for MCFC. Gordon Research Conference on High Temperature Corrosion, New London, NH, USA (2003)
Parezanovic, I.; Spiegel, M.: Surface modification of different Fe–Si and Fe–Mn alloys by oxidation/reduction treatments. Eurocorr 2003, Budapest, Hungary (2003)
Li, Y. S.; Spiegel, M.: Degradation performance of Al-containing alloys and intermetallics by molten ZnCl2/KCl. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Spiegel, M.: Factors affecting the high temperature corrosion resistance of coatings in waste fired plant. Corrosion Science in the 21th Century, UMIST Manchester, UK (2003)
Spiegel, M.; Parezanovic, I.; Strauch, E.; Grabke, H. J.: Spinel forming stainless steels as possible current collector materials for molten carbon ate fuel cells. Fuel Cells Science and Technology, Amsterdam, The Netherlands (2002)
Spiegel, M.; Warnecke, R.: Korrosion hochlegierter Stähle und nichtmetallischer Werkstoffe unter Müll verbrennungsbedingungen. VDI Fachtagung: ‚Korrosion in energieerzeugenden Anlagen’, Würzburg (2002)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Invited lecture on the Workshop: ‘Life cycle issues in advanced energy systems’, Woburn, UK (2002)
Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Conference-Aqueous Corrosion, New London, NH, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.