Srikakulapu, K.; Morsdorf, L.; Tung, P.-Y.; Prithiv, T. S.; Herbig, M.: Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness. European Congress and Exhibition on Advanced Materials and Processes, EUROMAT 2021, online (2021)
Srikakulapu, K.; Qin, Y.; Sreekala, L.; Morsdorf, L.; Herbig, M.: On the decomposition resistance of carbonitride precipitates during high-pressure torsion in X30CrMoN15-1 bearing steel. High Nitrogen Steel conference, HNS 2021, online, Shanghai, China (2021)
Qin, Y.; Mayweg, D.; Tung, P.-Y.; Pippan, R.; Herbig, M.: Mechanism of cementite decomposition in 100Cr6 bearing steels during high pressure torsion. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Mayweg, D.; Morsdorf, L.; Wu, X.; Herbig, M.: The role of carbon in the white etching crack phenomenon in bearing steels. MSE Congress 2020, virtual, Sankt Augustin, Germany (2020)
Herbig, M.: Joint Nanoscale Structural and Chemical Characterization by Correlative Atom Probe Tomography and Transmission Electron Microscopy. Joint Workshop on Nano-Characterisation (4TU.HTM / M2i), Utrecht, The Netherlands (2019)
Herbig, M.: Atomare Einsichten in Struktur und Zusammensetzung von Stählen durch korrelative Elektronenmikroskopie / Atomsondentomographie. 25. Werkstoffkolloquium des Technischen Beirats, Hannover, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.