Neugebauer, J.: Ab initio thermodynamics: Status and perspectives. Workshop at State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China (2012)
Liot, F.; Friák, M.; Hickel, T.; Neugebauer, J.: The influence of ternary additions in the Fe2Nb C14 Laves phase. ICAMS Advanced Discussions, Bochum, Germany (2012)
Lips, K.; Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Bittl, R.et al.; Teutloff, C.: The Staebler-Wronski Effect in a-Si:H Revisited with Advanced Electron Paramagnetic Resonance (EPR). MRS Spring Meeting, San Francisco, CA, USA (2012)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: The Dangling-bond Defect in Crystalline and Amorphous Silicon: Insights from Ab initio Calculations of EPR-parameters. MRS Spring Meeting, San Francisco, CA, USA (2012)
Neugebauer, J.: Ab initio guided materials design: Concepts, prospects and challenges. Seminar talk at Universität Duisburg-Essen, Duisburg, Germany (2012)
Palumbo, M.; Fries, S. G.; Hammerschmidt, T.; Drautz, R.; Körmann, F.; Hickel, T.; Neugebauer, J.: SAPIENS, a DFT and experimental based thermophysical database for pure elements. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: The dangling-bond defect in amorphous silicon: Insights from ab initio calculations of EPR parameters. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Bauer, K. D.; Todorova, M.; Hingerl, K.; Neugebauer, J.: Ab-initio Study on Liquid Metal Embrittlement in the Fe/Zn System. DPG Frühjahrstagung 2012, Bochum, Germany (2012)
Cheng, S.-T.; Todorova, M.; Neugebauer, J.: Interactions of 2nd row high electron affinity elements with Mg(0001). DPG Frühjahrstagung 2012, Berlin, Germany (2012)
Izanlou, A.; Todorova, M.; Friák, M.; Neugebauer, J.: Ab initio study of stability of Fe3Al surfaces in contact with an oxygen atmosphere. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…