Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: Mechanical characterization of copper thin films produced by photolithography with a novel microscale high temperature loading rig. The International Conference on Experimental Mechanics, (ICEM) 2018, Brussels, Belgium (2018)
Lee, S.; Liebscher, C.; Dehm, G.: In-situ TEM study on deformation behaviors of CrMnFeCoNi single crystal high entropy alloys. European Solid Mechanics Conference (ESMC) , Bologna, Italy (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Dislocation source activation by nanoindentation in single crystals and at grain boundaries. E-MRS Spring, Strasbourg, France (2018)
Duarte, M. J.; Fang, X.; Brinckmann, S.; Dehm, G.: New approaches for in-situ nanoindentation of hydrogen charged alloys: insights on bcc FeCr alloys. DPG Spring Meeting of the Condensed Matter Section, Berlin, Germany (2018)
Dehm, G.: “Mechanical microscopy”: Resolving the mechanical behavior and underlying mechanisms of materials with high spatial resolution. The 18th Israel Materials Engineering Conference (IMEC-18), Dead Sea, Israel (2018)
Li, J.; Dehm, G.; Kirchlechner, C.: Differences in dislocation source activation stress in the grain interior and at twin boundaries using nanoindentation. Nanobruecken 2018, Erlangen, Germany (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…