Race, C. P.; von Pezold, J.; Neugebauer, J.: Simulations of Grain Boundary Migration via the Nucleation and Growth of Islands. MSE Congress 2012, Darmstadt, Germany (2012)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Simulations of grain boundary migration via the nucleation and growth of islands. DPG Frühjahrstagung 2012, Berlin, Germany (2012)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Towards an ab-initio based understanding of H-embrittlement: An atomistic study of the HELP mechanism. Joint Hydrogenius and ICNER International Workshop on Hydrogen-Materials Interactions, Kyushu, Japan (2012)
Korbmacher, D.; von Pezold, J.; Spatschek, R.: Hydrogen embrittlement - A scale bridging perspective. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Haghighat, S. M. H.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Effect of local stress state on the glide of ½a₀<111> screw dislocation in bcc-Fe. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamics of the strain-induced dissolution of cementite in pearlitic structure steel: An ab-initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Grain boundary migration via the nucleation and growth of islands in molecular dynamics. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
von Pezold, J.; Neugebauer, J.: Effect of H on homogeneous dislocation nucleation: Consequences for hydrogen embrittlement. DPG Frühjahrstagung der Sektion Kondensierte Materie (SKM), Dresden, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…