Varanasi, R. S.; Gault, B.; Ponge, D.: Effect of Nb micro-alloying on austenite nucleation and growth in a medium manganese steel during intercritical annealing. Acta Materialia 229, 117786 (2022)
Aota, L. S.; Souza Filho, I. R.; Roscher, M.; Ponge, D.; Sandim, H. R. Z.: Strain hardening engineering via grain size control in laser powder-bed fusion. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 838, 142773 (2022)
Wang, X.; Liu, C.; Sun, B.; Ponge, D.; Jiang, C.; Raabe, D.: The dual role of martensitic transformation in fatigue crack growth. Proceedings of the National Academy of Sciences of the United States of America 119 (9), e2110139119 (2022)
Lee, D.-H.; Zhao, Y.; Lee, S. Y.; Ponge, D.; Aime Jägle, E.: Hydrogen-assisted failure in Inconel 718 fabricated by laser powder bed fusion: The role of solidification substructure in the embrittlement. Scripta Materialia 207, 114308 (2022)
Wang, Z.; Lu, W.; Min Song, F. A.; Ponge, D.; Raabe, D.; Li, Z.; Li, Z.: High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications 13, 3598 (2022)
Aota, L. S.; Bajaj, P.; Zilnyk, K. D.; Ponge, D.; Zschommler Sandim, H. R.: The origin of abnormal grain growth upon thermomechanical processing of laser powder-bed fusion alloys. Materialia 20, 101243 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.