Jenko, D.; Palm, M.: Transmission electron microscopy of the Fe–Al–Ti–B alloys with additions of Mo. 19th International Microscopy Congress (IMC19), Sidney, Australia (2018)
Prokopčáková, P.; Švec, M.; Lotfian, S.; Palm, M.: Microstructure – property relationships of iron aluminides. 64. Metallkunde-Kolloquium Montanuniversität Leoben, Lech am Arlberg, Austria (2018)
Peng, J.; Moszner, F.; Vogel, D.; Palm, M.: Influence of the Al content on the aqueous corrosion resistance of binary Fe–Al alloys in H2SO4. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Peng, J.; Vogel, D.; Palm, M.: Influence of the Al content on the corrosion resistance of binary Fe–Al alloys in H2SO4. EUROMAT 2017 – European Congress and Exhibition on Advanced Materials and Processes, Thessaloniki, Greece (2017)
Palm, M.: Development and processing of advanced iron aluminide alloys for application at high temperatures. 62. Metallkunde Kolloquium
, Lech am Arlberg, Austria (2016)
Marx, V. M.; Palm, M.: The wet and hot corrosion behavior of iron aluminides. THERMEC 2016 – Int. Conf. on Processing & Manufacturing of Advanced Materials
, Graz, Austria (2016)
Palm, M.: Iron aluminides: From alloy development to processing. The Materials Chain from Discovery to Production (contributed talk), Bochum, Germany (2016)
Hasemann, G.; Gang, F.; Palm, M.; Bogomol, I.; Krüger , M.: Determining the ternary eutectic alloy composition on the Mo-rich side of the Mo–Si–B system. Advances in Materials & Processing Technologies – AMPT 2015, Madrid, Spain (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…