Patil, P.; Lee, S.; Dehm, G.; Brinckmann, S.: Influence of crystal orientation on twinning in austenitic stainless-steel during single micro-asperity tribology and nanoindentation. WEAR 504-505, 204403 (2022)
Tsybenko, H.; Farzam, F.; Dehm, G.; Brinckmann, S.: Scratch hardness at a small scale: Experimental methods and correlation to nanoindentation hardness. Tribology International 163, 107168 (2021)
Duarte, M. J.; Fang, X.; Rao, J.; Krieger, W.; Brinckmann, S.; Dehm, G.: In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56 (14), pp. 8732 - 8744 (2021)
Ebner, A. S.; Brinckmann, S.; Plesiutschnig, E.; Clemens, H.; Pippan, R.; Maier-Kiener, V.: A Modified Electrochemical Nanoindentation Setup for Probing Hydrogen-Material Interaction Demonstrated on a Nickel-Based Alloy. JOM-Journal of the Minerals Metals & Materials Society 72 (5), pp. 2020 - 2029 (2020)
Brinckmann, S.: A framework for material calibration and deformation predictions applied to additive manufacturing of metals. International Journal of Fracture 218, pp. 85 - 95 (2019)
Brinckmann, S.: The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. International Journal of Fracture 218 (1-2), pp. 5 - 61 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.