Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: On the Role of Trigger Signal Spreading Velocity for Efficient Self-Healing Coatings for Corrosion Protection. Journal of the Electrochemical Society 165 (16), pp. C1017 - C1027 (2018)
Dandapani, V.; Tran, T. H.; Bashir, A.; Evers, S.; Rohwerder, M.: Hydrogen Permeation as a Tool for Quantitative Characterization of Oxygen Reduction Kinetics at Buried Metal-Coating Interfaces. Electrochimica Acta 189, pp. 111 - 117 (2016)
Tran, T. H.; Gerlitzky, C.; Rohwerder, M.; Groche, P.: Which properties must a surface have to be suitable for cold pressure welding? 22nd International Conference on Material Forming (ESAFORM 2019), Mondragon Unibrtsitatae, Spain, May 08, 2019 - May 10, 2019. AIP Conference Proceedings 2113, 050019, (2019)
Uebel, M.; Tran, T. H.; Altin, A.; Gerlitzky, C.; Erbe, A.; Groche, P.: Which Properties Must a Surface have to be Suitable for Cold Pressure Welding? 22nd International Conference on Material Forming (ESAFORM 2019), Mondragon Unibrtsitatae, Spain (2019)
Rohwerder, M.; Tran, T. H.: Novel zinc-nanocontainer composite coatings for intelligent corrosion protection. 11th Intrenational Conference on Zinc And Zinc Alloy Coated Steel Sheet- GALVATECH 2017, The University of Tokyo, Tokyo, Japan (2017)
Uebel, M.; Vimalanandan, A.; Tran, T. H.; Rohwerder, M.: Coatings for intelligent self-healing of macroscopic defects: first results and the major challenges. eMRS, Symposium „Self-Healing Materials", Warsaw, Poland (2015)
Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: Role of Trigger Signal Spreading Velocity on Self-healing Capability of Intelligent Coatings for Corrosion Protection. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany (2019)
Vimalanandan, A.; Altin, A.; Tran, T. H.; Rohwerder, M.: Conducting Polymers for Corrosion Protection - Raspberry like shaped ICP “pigments”. Gordon Research Conference Corrosion-Aqueous, New London, NH, USA (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.