Rabe, M.; Toparli, C.; Chen, Y.-H.; Kasian, O.; Mayrhofer, K. J. J.; Erbe, A.: Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution. Physical Chemistry Chemical Physics 21 (20), pp. 10457 - 10469 (2019)
Toparli, C.; Ebin, B.; Gürmen, S.: Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. Journal of Magnetism and Magnetic Materials 423, pp. 133 - 139 (2017)
Toparli, C.; Sarfraz, A.; Erbe, A.: A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies. Physical Chemistry Chemical Physics 17, pp. 31670 - 31679 (2015)
Erbe, A.; Nayak, S.; Chen, Y.-H.; Niu, F.; Pander, M.; Tecklenburg, S.; Toparli, C.: How to probe structure, kinetics and dynamics at complex interfaces in situ and operando by optical spectroscopy. In: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; part of "Reference Module in Chemistry, Molecular Sciences and Chemical Engineering", pp. 199 - 219 (Ed. Wandelt, K.). Elsevier, Waltham, MA, USA (2017)
Toparli, C.: Passivity and passivity breakdown on copper: In situ and operando observation of surface oxides. Dissertation, Ruhr-Universität Bochum, Fakultät Maschinenbau, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we investigate the segregation behavior and complexions in the CoCrFeMnNi high-entropy alloys (HEAs). The structure and chemistry in the HEAs at varying conditions are being revealed systematically by combining multiple advanced techniques such as electron backscatter diffraction (EBSD) and atom probe tomography (APT).
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…