Vlasak, R.; Klueppel, I.; Grundmeier, G.: Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer films on semiconducting electrodes. Electrochim. Acta 52 (28), pp. 8075 - 8080 (2007)
Posner, R.; Giza, G.; Vlasak, R.; Grundmeier, G.: Electrochemical and Spectroscopic Analysis of Ion Transport Processes along Polymer/Oxide/Metal Interfaces in Corrosive and Non-Corrosive Atmosphere. Euradh 2008 - Adhesion '08, St Catherine's College, Oxford, UK (2008)
Grundmeier, G.; Valtiner, M.; Vlasak, R.: Adhesion promoting films and monolayers at polymer/oxide/metal interfaces. NACE2008 RIP Session Coatings and Inhibitors, New Orleans, LA, USA (2008)
Grundmeier, G.; Posner, R.; Vlasak, R.: Combined Spectroscopic and Electrochemical Studies of Water and Ion Transport along Polymer/Oxide/Metal Interphases. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Grundmeier, G.; Fink, N.; Giza, M.; Popova, V.; Vlasak, R.; Wapner, K.: Application of combined spectroscopic, electrochemical and microscopic techniques for the understanding of adhesion and de-adhesion at polymer/metal interfaces. 24. Spektrometertagung, Dortmund, Germany (2005)
Vlasak, R.; Grundmeier, G.: Surface-Enhanced Infrared Spectroscopy of Ultra-Thin Inorganic and Organic Films. 104. Hauptversammlung der Deutschen Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt a. M., Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.