Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size-dependent coherent twin boundary strength contribution in Cu micropillars. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Hosseinabadi, R.; Riesch-Oppermann, H.; Best, J. P.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. ECI conference 2022, Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Hosseinabadi, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Impact of an incoherent twin boundary on the mechanical response of Cu bi-crystalline micropillars. 11th European Solid Mechanics Conference - ESMC 2022, Galway, Ireland (2022)
Hosseinabadi, R.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. DGM Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Hosseinabadi, R.: Dislocation transmission through coherent and incoherent twin boundaries in copper at the micron scale. Dissertation, Ruhr University Bochum (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…