Smith, A. J.; Milenkovic, S.; Hassel, A. W.: Directionally Solidfied Nanostructured Materials: Properties and Applications. International Bunsen Discussion Meeting: Modern electrochemistry of new materials, Rathen, Germany (2006)
Smith, A. J.; Milenkovic, S.; Hassel, A. W.: Metallic Nanoarrays for application in Nanoelectronics and Nanosensor Technology. 4th Spring meeting of the International Society of Electrochemistry, Singapur, Singapur (2006)
Hassel, A. W.; Bello Rodriguez, B.; Milenkovic, S.; Schneider, A.: Directionally solidified eutectics as a route for the formation of self organised nanostructures. 56rd Meeting of the International Society of Electrochemistry, Busan, South Korea (2005)
Bello Rodriguez, B.; Milenkovic, S.; Hassel, A. W.; Schneider, A.: Formation of self-organised nanostructures from directionally solidified eutectic alloys. 12th International Symposium on Metastable and nano Materials (ISMANAM), Paris, France (2005)
Hassel, A. W.; Milenkovic, S.; Schneider, A.: Preparation of One-Dimensionally Structured Electrode Materials by Directional Solidification. 207th Meeting of The Electrochemical Society, Québec City, Canada (2005)
Milenkovic, S.; Frankel, D.; Smith, A. J.; Hassel, A. W.: Selective Phase Dissolution of NiAl-Mo Directionally Solidified Eutectic Alloys. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Milenkovic, S.; Frommeyer, G.; Schneider, A.: Mechanical Behaviour of the NiAl-W Eutectic Alloys. EUROMAT 2007, European Congress and Exhibition an Advanced Materials and Processes, Nürnberg, Germany (2007)
Milenkovic, S.; Hassel, A. W.: A combined method for the production of self-organised metallic nano-structures. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Milenković, S.; Palm, M.; Frommeyer, G.; Schneider, A.: Microstructure and mechanical properties of Fe–Al–Nb eutectic alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…