Stein, F.; Dovbenko, O. I.; Palm, M.: Phase Relations between Laves Phases in Transition Metal Systems - Case Studies: Co–Nb, Al–Co–Nb, Cr–Ti, Fe–Zr, Al–Fe–Zr. EUROMAT 2005, Prague, Czech Republic (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Phase Equilibria in the Al–Co–Nb Ternary System in the Vicinity of the Laves Phases. CALPHAD XXXIV, Maastricht, The Netherlands (2005)
Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. 2nd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Toulouse, France (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System. Preliminary Results. International Workshop "Laves Phases IV", MPI für Eisenforschung, Düsseldorf, Germany (2005)
Dovbenko, O. I.; Palm, M.; Stein, F.: Investigation of the Phase Equilibria in the Al–Co–Nb System using Liquid-Solid Diffusion Couples. Preliminary Results. COST 535 Diffusion Couple Workshop, MPI für Eisenforschung, Düsseldorf, Germany (2004)
Stein, F.; Jiang, D.; Palm, M.; Sauthoff, G.: Laves Phase Polytypism in the Co–Nb System. TOFA 2004 - Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
Palm, M.: Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung. Düsseldorf, Germany (2004)
Palm, M.; Eumann, M.; Sauthoff, G.: Improving Properties of Fe-Al Based Alloys by Increasing the Stability Range of DO3/L21 Order. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf (2004)
Siggelkow, L.; Kreiner, G.; Palm, M.; Stein, F.: Synthese und Eigenschaften der intermetallischen Phasen Nb2Co7. Workshop "The Nature of Laves Phases VIII", Düsseldorf, Germany (2004)
Palm, M.: Determination and application of the Al–Ti and Al–Fe–Ti phase diagrams. Colloquium at ONERA / Colloquium at Universite de Rouen, Chatillon / Rouen, France (2003)
Stein, F.; Palm, M.; Sauthoff, G.: Structures and Stability of Laves Phases. TMS Annual Meeting - Intern. Symp. Intermetallic and Advanced Metallic Materials - A Symposium Dedicated to Dr. C. T. Li on His 65th Birthday, San Diego, CA, USA (2003)
Stein, F.; Sauthoff, G.; Palm, M.: Intermetallic Phases and Phase Equilibria in the Fe–Zr and Fe–Zr–Al Systems. Discussion Meeting on Thermodynamics of Alloys (TOFA 2002), Rome, Italy (2002)
Palm, M.; Sauthoff, G.: Characterization and Processing of an Advanced Intermetallic NiAl-Base Intermetallic Alloy for High-Temperature Applications. Structural Intermetallics 2001 (ISSI-3), Jackson Hole, Wyoming (2002)
Palm, M.: Evaluation of alloy systems for developing new intermetallic lightweight intermetallic materials. Colloquium at CIRIMAT-ENSIACET, Toulouse, France (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…