Goerdeler, M.: Application of a dislocation density based flow stress model in the integrative through-process modeling of Aluminium production. Dissertation, RWTH Aachen, Aachen, Germany (2007)
Wolff, C.: Der tribologisch asymmetrische Flachstauchversuch - Eine neue Methode zur Analyse von Reibungsvorgängen bei Umformprozessen. Dissertation, RWTH Aachen, Aachen, Germany (2001)
Kaushal, C.: Untersuchung der Abhängigkeit des Ölaustrags von der Oberflächenfeinstruktur beim Auswalzen gedoppelter Aluminiumfolien. Diploma, HS Niederrhein, Krefeld, Germany (2003)
Tranchant, J.: Deformation of Semi-Brittle Intermetallic Material under Superimposed Hydrostatic Pressure. Diploma, Ecole Centrale de Nantes, Nantes, France (2002)
Paiva do Nascimento, A. W.: An optimized method to determine initial parameters of advanced yield surfaces for sheet metal form-ing applications. Master, Ruhr-Universität Bochum (2021)
Kusampudi, N.: Using Machine Learning and Data-driven Approaches to Predict Damage Initiation in Dual-Phase Steels. Master, Ruhr-Universität Bochum (2020)
Soundararajan, C. K.: Recrystallization behavior and mechanical properties of interstitially alloyed CoCrFeMnNi equiatomic high entropy alloy. Master, RWTH Aachen University (2020)
Ackers, M.: Recommissioning of a metal powder atomisation system and investigation of its suitability to produce powders for additive Manufacturing processes. Master, Ruhr-Universität Bochum, Bochum, Germany (2017)
Qin, Y.: Effect of post-heat treatment on the microstructure and mechanical properties of SLM-produced IN738LC. Master, RWTH Aachen, Aachen, Germany (2017)
Wu, L.: Characterization of the microstructure and impurities of Al–Mg–Sc alloy produced by Laser Additive Manufacturing. Master, RWTH Aachen, Aachen, Germany (2016)
Lu, L.: Characterization of the crack formation mechanism in Ni-based superalloy Inconel 738LC produced by Selective Laser Melting (SLM). Master, Institut für Eisenhüttenkunde, RWTH Aachen, Aachen, Germany (2015)
Sheng, Z.: Characterization of the Microstructure and Mechanical Properties of Maraging Steels Produced by Laser Additive Manufacturing. Master, RWTH Aachen University, Aachen, Germany (2014)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…