Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Strongly versus weakly non-local dislocation transport and pile-up. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
Reese, S.; Kochmann, J.; Mianroodi, J. R.; Wulfinghoff, S.; Svendsen, B.: Two-scale FE-FFT phase-field-based computational modeling of bulk microstructural evolution and nanolaminates. 12th World Congress on Computational Mechanics, Seoul, South Korea (2016)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of algorithms and solution methods for classic and phase-field-based periodic inhomogeneous elastostatics. ECCOMAS Congress 2016, Crete, Greece (2016)
Svendsen, B.; Mianroodi, J. R.: Atomistic and phase-field modelling of nanoscopic dislocation processes. Dislocation based Plasticity, Kloster Schöntal, Schöntal, Germany (2016)
Mianroodi, J. R.; Svendsen, B.: Periodic molecular dynamics modeling of dislocation-stacking fault interaction. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Mianroodi, J. R.; Svendsen, B.: Molecular Dynamics-Based Modeling of Dislocation-Stacking Fault Interaction. 84th Annual Meeting of International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad, Serbia (2013)
Mianroodi, J. R.; Svendsen, B.: Modeling and calculation of the stacking fault free energy of iron at high temperature. International Workshop Molecular Modeling and Simulation: Natural Science meets Engineering, Frankfurt a. M., Germany (2013)
Mianroodi, J. R.; Shanthraj, P.; Svendsen, B.: Comparison of Methods for Discontinuous and Smooth Inhomogeneous Elastostatics. 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…