Shah, V.; Sedighiani, K.; Van Dokkum, J. S.; Bos, C.; Roters, F.; Diehl, M.: Coupling crystal plasticity and cellular automaton models to study meta- dynamic recrystallization during hot rolling at high strain rates. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 849, 143471 (2022)
Shah, V.; Krugla, M.; Offerman, S. E.; Sietsma, J.; Hanlon, D. N.: Effect of silicon, manganese and heating rate on the ferrite recrystallization kinetics. ISIJ International 60 (6), pp. 1312 - 1323 (2020)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites for Recrystallization using Crystal Plasticity Simulations. 7th International Conference on Recrystallization and Grain Growth, Ghent, Belgium (2019)
Shah, V.; Diehl, M.; Roters, F.: Prediction of Nucleation Sites During Recrystallization. M2i conference “Meeting Materials”, Noordwijkerhout, The Netherlands (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.