Leineweber, A.; Stein, F.: Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation”. Materials and Design 247, 113373 (2024)
Flores, A.; Chatain, S.; Fossati, P.; Stein, F.; Joubert, J.-M.: Correction: Experimental Investigation and Thermodynamic Assessment of the Cr–Mo–Ti System. Journal of Phase Equilibra and Diffusion 45, p. 433 (2024)
Stein, F.; He, C.: About the Alkemade Theorem and the Limits of its Applicability for the Construction of Ternary Liquidus Surfaces. Journal of Phase Equilibra and Diffusion 45, pp. 489 - 501 (2024)
Gedsun, A.; Stein, F.; Palm, M.: Phase Equilibria in the Fe-Al-Nb(-B) System at 700 degrees C. Journal of Phase Equilibra and Diffusion 43 (4), pp. 409 - 418 (2022)
Distl, B.; Hauschildt, K.; Rashkova, B.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part I: Low-Temperature Phase Equilibria Between 700 and 900 °C. Journal of Phase Equilibra and Diffusion 43, pp. 355 - 381 (2022)
Distl, B.; Hauschildt, K.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part II: High-Temperature Phase Equilibria Between 1000 and 1300 °C. Journal of Phase Equilibra and Diffusion 43, pp. 554 - 575 (2022)
Gedsun, A.; Stein, F.; Palm, M.: Development of new Fe–Al–Nb(–B) alloys for structural applications at high temperatures. MRS Advances 6, pp. 176 - 182 (2021)
Stein, F.; Leineweber, A.: Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science 56, pp. 5321 - 5427 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…