Grundmeier, G.; Rossenbeck, B.; Roschmann, K. J.; Ebbinghaus, P.; Stratmann, M.: Corrosion Protection of Zn-Phosphate Containing Water Borne Dispersion Coatings on Steel. Part 2: Corrosive de-adhesion of model films on iron substrates. Corrosion Science 48 (11), pp. 3716 - 3730 (2006)
Rossenbeck, B.; Ebbinghaus, P.; Stratmann, M.; Grundmeier, G.: Corrosion protection of Zn-phosphate containing water borne dispersion coatings on steel. Part 1: Design and Analysis of Model Water Based Latex Films on Iron Substrates. Corrosion Science 48, pp. 3703 - 3715 (2006)
Grundmeier, G.; Roßenbeck, B.: Spectroscopic, microscopic and electrochemical investigations of protective model latex films on iron. GDCH Jahrestagung, München, Germany (2003)
Grundmeier, G.; Stratmann, M.; Roßenbeck, B.: Spectroscopic, microscopic and electrochemical investigations of protective model latex films on iron. ECASIA, Berlin, Germany (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.