Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.: Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochemistry Communications 13 (12), pp. 1533 - 1535 (2011)
Laska, C. A.; Rossrucker, L.; Klemm, S. O.; Pust, S. E.; Hüpkes, J.; Mayrhofer, K. J. J.: Die Kopplung von Elektrochemie mit zeitaufgelöster Elementanalytik am Beispiel der chemischen und elektrochemischen Oberflächentexturierung von ZnO-Dünnschichten. In: Tagungsband zur Jahrestagung der Gesellschaft für Korrosionsschutz e.V. 2013, pp. 118 - 128. Jahrestagung der Gesellschaft für Korrosionsschutz e.V. , Frankfurt am Main, Germany, November 12, 2013 - November 13, 2013. (2013)
Laska, C. A.: Development of a Scanning Flow Cell system with Dynamic Electrolyte Change for Fully Automated Parameter Screening. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.