Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Correction: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLOS ONE 19 (6), e0306374 (2024)
Dubosq, R.; Camacho, A.; Rogowitz, A.; Zhang, S.; Gault, B.: Influence of high-strain deformation on major element mobility in garnet: Nanoscale evidence from atom probe tomography. Journal of Metamorphic Geology 42 (3), pp. 355 - 372 (2024)
Dubosq, R.; Schneider, D.; Alfredo, C.; Gault, B.: Strain hardening induced by crystal plasticity: A new mechanism for brittle failure in garnets. Earth and Planetary Science Letters 617, 118273 (2023)
Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLoS One 18 (2), e0281703 (2023)
Dubosq, R.; Schneider, D.; Zhou, X.; Gault, B.; Langelier, B.; Pleše, P.: Bubbles and atom clusters in rock melts: A chicken and egg problem. Journal of Volcanology and Geothermal Research 428, 107574 (2022)
Dubosq, R.; Rogowitz, A.; Schweinar, K.; Gault, B.; Schneider, D.: A 2D and 3D nanostructural study of naturally deformed pyrite: assessing the links between trace element mobility and defect structures. Contributions to Mineralogy and Petrology 174, 72 (2019)
Rogowitz, A.; Zaefferer, S.; Dubosq, R.: Direct observation of dislocation nucleation in pyrite using combined electron channelling contrast imaging and electron backscatter diffraction. Terra Nova 30 (6), pp. 423 - 430 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…