Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio based prediction of phase diagrams: Application to magnetic shape-memory alloys. 9. Materialwissenschaftlicher Tag der Ruhr-Universtät Bochum, Bochum, Germany (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. International Conference on Ferromagnetic Shape-Memory Alloys, ICFSMA’11, Dresden, Germany (2011)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. TMS2011, San Diego, CA, USA (2011)
Hickel, T.; Al-Zubi, A.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. Multiscale Materials Modelling, Freiburg, Germany (2010)
Hickel, T.; Uijttewaal, M.; Al-Zubi, A.; Neugebauer, J.: Ab initio simulation of magnetic shape memory alloys: The interplay of magnetic and vibrational degrees of freedom. Oberseminar: Ultraschnelle Dynamik in Festkörpern und an Grenzflächen, Fakultät für Physik, Universtität Duisburg-Essen, Duisburg, Germany (2010)
Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Ab initio investigation of temperature dependent effects in magnetic shape memory Heusler alloys. SPP1239 Fokustreffen A "Fundamentals", Bonn, Germany (2009)
Dutta, B.; Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Prediction of chemical trends in the phase diagrams of magnetic shape memory alloys from first-principles calculations. International Workshop on Ab initio Description of Iron and Steel (ADIS2012), Ringberg, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…