Gutierrez-Urrutia, I.; del Valle, J.; Zaefferer, S.; Raabe, D.: Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests. Journal of Materials Science 45, pp. 6604 - 6610 (2010)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Materials Science and Engineering A 527, pp. 3552 - 3560 (2010)
Hessling, D.; Raabe, D.: Synthesis of hollow metallic particles via ultrasonic treatment of a metal emulsion. Scripta Materialia 62, pp. 690 - 692 (2010)
Kobayashi, S.; Zambaldi, C.; Raabe, D.: Orientation dependence of local lattice rotations at precipitates: Example of κ-Fe3AlC carbides in a Fe3Al-based alloy. Acta Materialia 58 (20), pp. 6672 - 6684 (2010)
Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Liu, B.; Raabe, D.; Roters, F.; Eisenlohr, P.; Lebensohn, R. A.: Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction. Modelling and Simulation in Materials Science and Engineering 18 (8), 085005, pp. 085005-1 - 085005-21 (2010)
Liu, T.; Raabe, D.; Mao, W.-M.: A review of crystallographic textures in chemical vapor-deposited diamond films. Frontiers of Materials Science in China 4 (1), pp. 1 - 16 (2010)
Liu, W. C.; Man, C.-S.; Raabe, D.: Effect of strain hardening on texture development in cold rolled Al–Mg alloy. Materials Science and Engineering A 527, pp. 1249 - 1254 (2010)
Peranio, N.; Li, Y. J.; Roters, F.; Raabe, D.: Microstructure and texture evolution in dual-phase steels: Competition between recovery, recrystallization, and phase transformation. Materials Science and Engineering A 527 (16-17), pp. 4161 - 4168 (2010)
Sandim, M. J. R.; Sandim, H. R. Z.; Zaefferer, S.; Raabe, D.; Awaji, S.; Watanabe, K.: Electron backscatter diffraction study of Nb3Sn superconducting multifilamentary wire. Scripta Materialia 62 (2), pp. 59 - 62 (2010)
Swadener, J. G.; Bögershausen, H.; Sander, B.; Raabe, D.: Crystal orientation effects in scratch testing with a spherical indenter. International Journal of Materials Research 25, pp. 921 - 926 (2010)
Winning, M.; Raabe, D.: Fast, Physically-Based Algorithms for Online Calculations of Texture and Anisotropy during Fabrication of Steel Sheets. Advanced Engineering Materials 12, pp. 1206 - 1211 (2010)
Kraska, M.; Doig, M.; Tikhomirov, D.; Raabe, D.; Roters, F.: Virtual material testing for stamping simulations based on polycrystal plasticity. Computational Materials Science 46 (2), pp. 383 - 392 (2009)
Ayodele, S. G.; Varnik, F.; Raabe, D.: Effect of aspect ratio on transverse diffusive broadening: A lattice Boltzmann study. Physical Review E 80 (1), pp. 016304-1 - 016304-9 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.