Tasan, C. C.; Diehl, M.; Yan, D.; Shanthraj, P.; Roters, F.; Eisenlohr, P.; Raabe, D.: Integrated in-situ experiments – full field crystal plasticity simulations to analyze stress – strain partitioning in multi-phase alloys. Nanomechanical Testing in Materials Research and Development IV, Olhão, Algarve, Portugal (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. BSSM 9th Int. Conf. on Advances in Experimental Mechanics, Cardiff, UK (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: High resolution strain mapping coupled with EBSD during in-situ tension in SEM. Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universität Bochum, Bochum, Germany (2013)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: Stress-strain partitioning in martensitic-ferritic steels analyzed by integrated full-field crystal plasticity simulations and high resolution in situ experiments. GDRi CNRS MECANO General Meeting on the Mechanics of Nano-Objects, MPIE, Düsseldorf, Germany (2013)
Yan, D.; Tasan, C. C.; Raabe, D.: Coupled high resolution strain and microstructure mapping based on digital image correlation and electron backscatter diffraction. IMPRS-SurMat Seminar, Meschede, Germany (2013)
Zhang, J.; Raabe, D.; Lai, M.; Yan, D.; Tasan, C. C.: Site-preferential recrystallization and nano-precipitation to achieve improved mechanical properties. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Winter School 2014, Research Training Group 1483,
Karlsruher Intitut f. Technologie (KIT), Karlsruhe, Germany (2014)
Diehl, M.; Yan, D.; Tasan, C. C.; Shanthraj, P.; Roters, F.; Raabe, D.: Stress and Strain Partitioning in Multiphase Alloys: An Integrated Experimental-Numerical Analysis. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Yan, D.; Tasan, C. C.; Ponge, D.; Diehl, M.; Roters, F.; Hartmaier, A.; Raabe, D.: Experimental-Numerical Analysis of Stress and Strain Partitioning in Dual Phase Steel. 10th Materials Day, Joint workshop of the Materials Research Department (MRD) and the IMPRS-SurMat, Bochum, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.