Welsch, E. D.; Haghighat, S. M. H.; Gutiérrez-Urrutia, I.; Raabe, D.: Investigation of nano-sized kappa carbide distribution in advanced austenitic lightweight high-Mn steels by coupled TEM and DDD simulations: Strengthening and dislocation-based mechanisms. 2nd International Conference on High Manganese Steels, Aachen, Germany (2014)
Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Mesoscale modelling of the influence of loading conditions on the dislocation mobility and creep process in single crystal Ni base superalloys. KTH Stockholm-Sweden, Stockholm, Sweden (2014)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete Dislocation Dynamics Study of Creep Anisotropy in Single Crystal Ni Base Superalloys. MRS Fall Meeting, Bosten, USA (2013)
Haghighat, S. M. H.; Schäublin, R.; Raabe, D.: Molecular Dynamics Study of Obstacle Induced Hardening; From Nano-Sized Defects to Binary Junction. MRS Fall Meeting, Bosten, MA, USA (2013)
Haghighat, S. M. H.; Schäublin, R.; Raabe, D.: Atomistic study of forest hardening through binary dislocation junction in bcc-iron. 2013 MRS Spring Meeting, San Francisco, CA, USA (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete dislocation dynamics modeling of loading orientation effect on the low stress creep of single crystal Ni base superalloys. Intermetallics 2013, Bad Staffelstein, Germany (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Primary creep of Ni base supealloys used in hot gas turbine blades. Alstom Company, Baden, Switzerland (2012)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Dislocation dynamics modeling of the glide-climb mobility of a ½ a0<110>{111} dislocation in interaction with γ’ precipitate in Ni-based superalloy. 4th International Conference on Dislocations, Budapest, Hungary (2012)
Haghighat, S. M. H.; Schäublin, R.: Perspective of multiscale simulation approach in the development of novel materials. Tarbiat Modares University, Tehran, Iran (2012)
Haghighat, S. M. H.; Schäublin, R.: Atomistic simulation and transmission electron microscopy of obstacle strengthening in iron. Sahand University of Technology, Tabri, Iran (2012)
Haghighat, S. M. H.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Effect of local stress state on the glide of ½a₀<111> screw dislocation in bcc-Fe. 1st Austrian-German Workshop on Computational Materials Design, Kramsach, Austria (2012)
Schäublin, J.; Haghighat, S. M. H.: Simulation of the screw dislocation mobility in Fe by molecular dynamics. E-MRS Spring Meeting, Nice, France (2011)
Haghighat, S. M. H.; Schäublin, R.: Dislocations mechanisms in bcc-Fe; from atomistic to TEM observation. Workshop on ab initio Description of Iron and Steel: Mechanical properties, Ringberg Castle, Germany (2010)
Haghighat, S. M. H.; Reed, R. C.; Raabe, D.: Modeling of dislocation mechanisms and the influence of the γ/γ´lattice misfit on the dislocation assisted creep of high temperature Ni-base superalloys. 7th International Conference on Multiscale Materials Modeling , Berkeley, CA, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…