Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Simulations of the Oxidation Processes in Polycrystalline Metallic Alloys. International Workshop “Grain boundary diffusion, stresses and segregation”, Moscow, Russia (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Cluster6 (Durability) Meeting, Velsen-Noord, The Netherlands (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Rohwerder, M.: Application of Conducting Polymers for the Corrosion Protection of Iron and Zinc. Advances in Corrosion Science for Lifetime Prediction and Sustainability: ISE 8th Spring Meeting, Columbus, Ohio, USA (2010)
Bashir, A.; Muglali, M. I.; Hamou, R. F.; Rohwerder, M.: SECPM Study: Influence of the Tip Material and Its Coating on the Accuracy of Potential Profiling Across Electrical Double Layer at Solid/Liquid Interface. 217th ECS Meeting, Vancouver, Canada (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Rohwerder, M.: Self-assembled monolayers in corrosion research. Chemisches Kolloquium, Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe-Universität, Frankfurt a. M., Germany (2010)
Rohwerder, M.: On the meaning of electrode potentials measured by Kelvin probe on coated and bare metal surfaces. 217th ECS Meeting, Vancouver, Canada (2010)
Senöz, C.; Rohwerder, M.: High Resolution Study of Hydrogen Permeation through Metals by Scanning Kelvin Probe Force Microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Rohwerder, M.: Intelligent corrosion protection by organic and by metal based nano composite coatings. CORROSION 2010, Henry B. Gonzalez Convention Center, San Antonio, TX, USA (2010)
Rohwerder, M.: Geplante Forschung zu Batterien im Rahmen des Zentrums für Elektrochemie (CES) und des Kompetenzverbundes Nord. Batterietag Münster, Münster, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. International Symposium “High Temperature Oxidation and Corrosion”, Zushi (Tokyo), Japan (2010)
Evers, S.; Rohwerder, M.: Localized measurement of Hydrogen amount in Metals by SKP. 6th International Conference on Diffusion in Solids and Liquids (DSL 2010), Paris, France (2010)
Rohwerder, M.: Intelligent corrosion protection by organic and by metal based nano composite coatings. Chemical Nanotechnology Talks X, Frankfurt a. M., Germany (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Delft, The Netherlands (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. International Workshops on Surface Modification for Chemical and Biochemical Sensing, Przegorzaly, Poland (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…