Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using ab initio calculations in designing bcc Mg-Li alloys for ultra light-weight applications. Acta Materialia 57 (1), pp. 69 - 76 (2009)
Lymperakis, L.; Friák, M.; Neugebauer, J.: Atomistic calculations on interfaces: Bridging the length and time scales. The European Physics Journal Special Topics 177, pp. 41 - 57 (2009)
Ma, D.; Friák, M.; Neugebauer, J.; Raabe, D.; Roters, F.: Multiscale simulation of polycrystal mechanics of textured β-Ti alloys using ab initio and crystal-based finite element methods. Physica Status Solidi B 245 (12), pp. 2642 - 2648 (2008)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Error-propagation in multiscale approaches to the elasticity of polycrystals. Physica Status Solidi (B) 245, pp. 2636 - 2641 (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hallstedt, B.; Hickel, T.; Neugebauer, J.: Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Physical Review B 78, 033102 (2008)
Ismer, L.; Ireta, J.; Neugebauer, J.: First principles free energy analysis of helix stability: The origin of the low entropy in pi-helices. Journal of Physical Chemistry B 112, pp. 4109 - 4112 (2008)
Rinke, P.; Winkelnkemper, M.; Qteish, A.; Bimberg, D.; Neugebauer, J.; Scheffler, M.: Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. Physical Review B 77, 075202 (2008)
Counts, W. A.; Friak, M.; Battaile, C. C.; Raabe, D.; Neugebauer, J.: A comparison of polycrystalline elastic constants computed by analytic homogenization schemes and FEM. Physica Status Solidi B 245, pp. 2630 - 2635 (2008)
Raabe, D.; Sander, B.; Friák, M.; Ma, D.; Neugebauer, J.: Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: Theory and experiments. Acta Materialia 55 (13), pp. 4475 - 4487 (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends. Physical Review B 76 (2), 024309 (2007)
Rosa, A. L.; Neugebauer, J.: First-principles calculations of the structural and electronic properties of clean GaN (0001) surfaces. Physical Review B 73 (20), pp. 205346-1 - 205346-13 (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.