Rohwerder, M.: Zinc alloy coatings and nano-composite coatings for corrosion protection: From the basics to new challenges. IIM NMD ATM 2019: Advanced Materials for Industrial and Societal Applications, Kovalam, Thiruvananthapuram, India (2019)
Rohwerder, M.: Intelligent coatings for corrosion protection: on the need for new coating concepts. International Conference on Corrosion Protection and Application (ICCPA 2019), Chongqing, China (2019)
Rohwerder, M.: Scanning Kelvin Probe based techniques for mapping hydrogen distribution in metals and their application for investigating hydrogen embrittlement. Workshop “Hydrogen in Metals”, St Anne’s College, Oxford, UK (2019)
Uebel, M.; Rabe, M.; Rohwerder, M.: The Influence of Microstructure on Zn–Al–Mg Alloy Reactivity: A SKP-based Approach. Scientific Advisory Board Meeting 2019, 6-years Evaluation of the Max-Planck-Institut für Eisenforschung GmbH – Scientific Highlights Session, Düsseldorf, Germany (2019)
Rohwerder, M.: Die Kelvinsondentechnik in der Korrosion: von der Grundlagenforschung bis hin zu potentiellen Anwendungen im Feld. ProcessNet Meeting “Elektrochemische Prozesse”, Dechema-Haus, Frankfurt, Germany (2019)
Uebel, M.; Rohwerder, M.: The influence of microstructure on Zn–Al–Mg alloy reactivity investigated by SKP and SKPFM in changing atmospheres. Eurocorr 2018, Krakow, Poland (2018)
Rohwerder, M.; Tran, T. H.: Novel zinc-nanocontainer composite coatings for intelligent corrosion protection. 11th Intrenational Conference on Zinc And Zinc Alloy Coated Steel Sheet- GALVATECH 2017, The University of Tokyo, Tokyo, Japan (2017)
Merz, A.; Rohwerder, M.: Corrosion protection by composite coatings containing conducting polymer particles: elucidation of the “protection zone”. 232nd ECS Fall Meeting 2017, National Harbour, USA (2017)
Rohwerder, M.: Organic coatings for corrosion protection: self-healing at the delaminated interface. 232th Meeting of the Electrochemical Society, National Harbor, USA (2017)
Uebel, M.; Rohwerder, M.: Capsular networking and accelerated trigger signal spreading velocity in smart redox responsive coatings for corrosion protection. 232nd ECS Fall Meeting 2017, National Harbor, MD (greater Washington, DC area), USA (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. ECASIA 2017, Montpellier, France (2017)
Rohwerder, M.: A Novel Potentiometric Approach to a Quantitative Characterization of Oxygen Reduction Kinetics at Buried Interfaces and under Ultrathin Electrolyte Layers. Second International Conference on Electrochemical Science and Technology – ICONEST 2017, Indian Institute of Science, Bangalore, India (2017)
Uebel, M.; Rohwerder, M.: The impact of trigger signal spreading velocity on self-healing performance in smart anti-corrosion coatings. 6th International Conference on Self-Healing Materials (ICSHM) 2017, Friedrichshafen, Germany (2017)
Rohwerder, M.: Novel Approaches for Characterizing the Delamination resistance of Organic Coatings. 10th International Workshop on Application of Electrochemical Techniques to Organic Coatings –AETOC, Billerbeck, Germany (2017)
Kerger, P.; Rohwerder, M.; Vogel, D.: Using a Novel In-situ/Operando Chemical Cell to Investigate Surface Reactions such as the Reduction of Oxygen and Surface Oxides. AVS 63rd International Symposium & Exhibition, Nashville, TN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…