Zhang, X.; Hickel, T.; Rogal, J.; Drautz, R.; Neugebauer, J.: Atomistic origin of structural modulations in Fe ultrathin films on Cu(001). 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
Hickel, T.: Understanding complex materials at finite temperatures by ab inito methods. Colloquium at Institut für Materialwissenschaft, Universtität Stuttgart, Stuttgart, Germany (2014)
Hickel, T.: Ab initio basierte Methoden der mechanismen-orientierten Werkstoffentwicklung. Colloquium at Salzgitter-Mannesmann-Forschung GmbH, Duisburg, Germany (2014)
Hickel, T.; Nazarov, R.; McEniry, E.; Dey, P.; Neugebauer, J.: Impact of light elements on interface properties in steels. CECAM workshop “Modeling Metal Failure Across Multiple Scales”, Lausanne, Switzerland (2014)
Hickel, T.: Understanding complex materials at finite temperatures by ab inito methods. Physikalisches Kolloquium der TU Chemnitz, Chemnitz, Germany (2014)
Hickel, T.; Körmann, F.; Bleskov, I.; Neugebauer, J.: Ab Initio Based Modelling of Stacking Fault Energies in High-Strength Steels. International Seminar on Process Chain Simulation and Related Topics, Karlsruhe, Germany (2014)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Stacking Fault Energies: A First Principles Investigation for fcc Iron. Condensed Matter - Université Paris Descartes, Paris, France (2014)
Bleskov, I.; Hickel, T.; Neugebauer, J.: Impact of Local Magnetism on Stacking Fault Energies: A First Principles Investigation for fcc Iron. TMS 2014, San Diego, CA, USA (2014)
Dey, P.; Nazarov, R.; Hickel, T.; Neugebauer, J.: Ab-initio study of hydrogen trapping by kappa-carbides in an austenitic Fe matrix. DPG Frühjahrstagung, Dresden, Germany (2014)
Dutta, B.; Hickel, T.; Neugebauer, J.: Coupling of lattice dynamics and magnetism in magnetic shape memory alloys: Consequences for phase diagrams. Asia Sweden meeting on understanding functional materials from lattice dynamics (ASMFLD) conference, Indian Institute of technology Guwahati, Guwahati, India (2014)
Hickel, T.; Glensk, A.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Thermodynamics of materials up to the melting point: The role of anharmonicities. Asia Sweden Meeting on Understanding Functional Materials from Lattice dynamics, Guwahati, India (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.