Baron, C.; Springer, H.: Property-Driven Development of Metallic Structural Materials by Combinatorial Techniques on the Example of Fe–C–Cr Steels. Steel Research International 90 (12), 1900404 (2019)
Springer, H.; Zhang, J.; Szczepaniak, A.; Belde, M. M.; Gault, B.; Raabe, D.: Light, strong and cost effective: Martensitic steels based on the Fe - Al - C system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 762, 138088 (2019)
Baron, C.; Springer, H.; Raabe, D.: Development of high modulus steels based on the Fe – Cr – B system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 724, pp. 142 - 147 (2018)
Aparicio-Fernández, R.; Szczepaniak, A.; Springer, H.; Raabe, D.: Crystallisation of amorphous Fe – Ti – B alloys as a design pathway for nano-structured high modulus steels. Journal of Alloys and Compounds 704, pp. 565 - 573 (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science