Ettl, C.; Stratmann, M.: Editorial: Chemistry and the Max Planck Society: A Stable Bond Resonating into the Future. Angewandte Chemie International Edition 54 (20), pp. 5798 - 5799 (2015)
Ettl, C.; Stratmann, M.: Editorial: Die Chemie in der Max‐Planck‐Gesellschaft – Vergangenheit und Zukunft einer erfolgreichen Verbindung. Angewandte Chemie 127 (20), pp. 5892 - 5893 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.