Spiegel, M.: Factors affecting the high temperature corrosion resistance of coatings in waste fired plant. In: Corrosion Science in the 21th Century, 1. UMIST, Manchester, UK (2003)
Spiegel, M.; Zahs, A.; Grabke, H. J.: The role of alloying elements on the corrosion in oxidizing and chloridizing gases. In: Corrosion 2001, pp. 1 - 10. Corrosion 2001, Houston, Texas, USA, 2001. (2002)
Parezanović, I.; Spiegel, M.; Strauch, E.; Grabke, H.-J.: High alloyed stainless steels containing Co, Mn, Mo, Ni, Si as possible cathode current collectors in MCFC. In: Proceedings of International Congress on Advanced Materials, pp. 1 - 8. Materials Week 2001, International Congress on Advanced Materials, München, Germany, October 01, 2001 - October 04, 2001. (2001)
Spiegel, M.; Grabke, H.-J.: Corrosion mechanisms of steels by salt melts from waste incineration plants. In: Molten Salt Forum Ser.. Molten Salt Chemistry and Technology 5, Dresden, Germany, 1997-08. Trans Tech Publications Ltd (1998)
Schmitt, M.; Spiegel, M.: High Temperature Corrosion: Corrosion process of stainless steels and nickel base alloys under BtE and WtE conditions. International Conference on Waste and Biomass Combustion, Michelangelo Hotel Milano, Italy (2008)
Schmitt, M.; Spiegel, M.: Interim report on corrosion data: Dependence on variation of chemical environment. NextGenBioWaste, 2nd Progress Meeting 2008, Schiphol Airport Amsterdam, The Netherlands (2008)
Swaminathan, S.; Spiegel, M.; Rohwerder, M.: Investigations on external/internal oxidation of quarternary model alloy during annealing in N2/H2: Role of dew point and dwelling time. 7th International Conference on the Microscopy of Oxidation, Chester, UK (2008)
Schmitt, M.; Spiegel, M.: Contribution to the analysis of the corrosion process of metallic materials in incineration plants. EUROCORR 2008, EICC Edinburgh, UK (2008)
Swaminathan, S.; Spiegel, M.; Rohwerder, M.: Effect of annealing conditions on the selective oxidation of quarternary model alloy. 4th International Conference on Diffusion in Solids and Liquids, Barcelona, Spain (2008)
Schmitt, M.; Spiegel, M.: High Temperature Corrosion: Corrosion mechanism of candidate materials in lab-scale incineration environments. General Assembly NextGenBioWaste 2008, De Zwijger Amsterdam, The Netherlands (2008)
Schmitt, M.; Spiegel, M.: Corrosion and fouling data of candidate materials for WtE components: Part II. NextGenBioWaste, 1st Progress Meeting 2008, Schiphol Airport Amsterdam, The Netherlands (2008)
Swaminathan, S.; Koll, T.; Pohl, M.; Spiegel, M.: Hot-dip galvanizing simulation of model alloys and industrial steel grades: Correlation between surface chemistry and wettability. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Brito, P.; Pinto, H.; Pyzalla, A. R.; Spiegel, M.: Phase composition and internal stress development during the oxidation of iron aluminides. Final Conference COST Action 535 Thermodynamics of Alloyed Aluminides (THALU) and 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
Schmitt, M.; Spiegel, M.: Corrosion and fouling data of candidate materials for WtE components: Part I. NextGenBioWaste, 2nd Progress Meeting 2007, Schiphol Airport Amsterdam, The Netherlands (2007)
Swaminathan, S.; Spiegel, M.: Effect of alloy composition on the selective oxidation of ternary Fe–Si–Cr, Fe–Mn–Cr model alloys. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Schmitt, M.; Spiegel, M.: Introduction to the Working Group NGBW. NextGenBioWaste, 1st Progress Meeting 2007, Schiphol Airport Amsterdam, The Netherlands (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.