He, C.; Stein, F.; Palm, M.; Voß, S.: Thermodynamic Assessment of the Fe–Nb and Fe–Al–Nb System. 3rd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification and Solid-State Phase Transformation, Xi’an, China (2011)
Stein, F.; Palm, M.; Voß, S.; He, C.; Dovbenko, O. I.; Prymak, O.: Experimental Investigations of Phases, Phase Equilibria, and Melting Behaviour in the Systems Fe–Al–Nb and Co–Al–Nb and Their Terminal Binary Systems. Calphad XL, Rio de Janeiro, Brazil (2011)
Stein, F.: Laves Phases in Binary and Ternary Transition-Metal-Based Systems: Stability, Structure and Disorder. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Palm, M.; Engberding, N.; Stein, F.; Kelm, K.; Irsen, S. H.: Formation of Phases, Phase Stability and Evolution of the Microstructure in Al-rich Ti–Al Alloys. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Compositional Dependence of the Mechanical Properties of Laves Phases in the Fe–Nb(–Al) and Co–Nb(–Al) Systems. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Voß, S.; Stein, F.; Palm, M.; Raabe, D.: Mechanical Properties of Laves Phases in the Systems Fe–Nb(–Al) and Co–Nb(–Al) using Polycrystalline, Single-Phase Material. Materiels Science and Engineering 2010 (MSE), Darmstadt, Germany (2010)
Stein, F.; Lazace, J.: Kinetics of the Peritectoid Decomposition of the Intermetallic Phase Nb2Co7. PTM 2010, Solid-Solid Phase Transformations in Inorganic Materials, Avignon, France (2010)
Friák, M.; Deges, J.; Krein, R.; Stein, F.; Palm, M.; Frommeyer, G.; Neugebauer, J.: Combining Experimental and Computational Methods in the Development of Fe3Al-based Materials. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Stein, F.; Prymak, O.: Experimental Investigation of Phases and Phase Equilibria in the Ternary Fe–Al–Nb System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Prague, Czech Republic (2009)
He, C.; Stein, F.; Palm, M.: Thermodynamic Assessment of the Nb–Co and Nb–Co–Al System. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Stein, F.; Prymak, O.; Dovbenko, O. I.; He, C.; Palm, M.; Schuster, J. C.: Investigation of Phase Diagrams of Laves Phase Containing Binary and Ternary Nb–TM(–Al) Systems with TM=Cr,Fe,Co. 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and Their Applications to Solidification, Kornelimünster, Aachen, Germany (2009)
Vogel, S. C.; Eumann, M.; Palm, M.; Stein, F.: Investigation of the crystallographic structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. TMS 2009 Annual Meeting, San Francisco, CA, USA (2009)
Stein, F.: The Binary Fe–Al System. 5th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys (FEAL 2009), Prague, Czech Republic (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.