Hengge, K. A.; Scheu, C.: Stability of a novel Pt/Ru catalyst for polymer electrolyte membrane fuel cells. 64. Metallkunde-Kolloquium, Lech am Arlberg, Austria (2018)
Hengge, K. A.; Scheu, C.: Novel electrodes for polymer based fuel cells. The 18th Israel Materials Engineering Conference (IMEC18), Dead Sea, Israel (2018)
Hengge, K.: TEM Tomography: Insights into the degradation of Pt/Ru fuel cell catalysts. 3D materials characterization at all length scales and its application to iron and steel, MPIE Düsseldorf, Düsseldorf, Germany (2017)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopic insights into degradation processes in high temperature polymer electrolyte membrane fuel cells. Scandem 2015, Jyväskylä, Finland (2015)
Gänsler, T.; Hengge, K. A.; Scheu, C.: 3D Reconstruction of Identical Location Electron Micrographs – Methodology and Pitfalls. IAMNano 2019, International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, Düsseldorf, Germany (2019)
Gänsler, T.; Hengge, K. A.; Beetz, M.; Pizzutilo, E.; Scheu, C.: Tracking the Degradation of Fuel Cell Catalyst Particles: 3D Reconstruction of Nanoscale Transmission Electron Micrographs. CINEMAX IV, "Best poster Award at the Summer School", Toreby, Denmark (2018)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsche, M.; Scheu, C.: Material optimization for high-temperature polymer-electrolyte-membrane fuel cells. Material optimization for high-temperature polymer-electrolyte-membrane fuel cells, Duisburg, Germany (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Growth of novel Pt 3D networks on WO3-x electrodes and their effect on the performance of fuel cells. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopy studies of WO3-x based anodes for high temperature polymer electrolyte membrane fuel cells. IAM Nano 2015, Hamburg, Germany (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Degradation analysis of high temperature polymer electrolyte membrane fuel cells via electron microscopic techniques. TEM-UCA European Summer Workshop, Cadiz, Spain (2015)
Hengge, K.: Investigation of alternative catalyst and support materials and their effect on degradation in high-temperature polymer-electrolyte-membrane fuel cells. Dissertation, RWTH Aachen University, Aachen, Germany (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…