Chen, T.; Lu, W.; Li, J.; Chen, S.; Li, C.; Weng, G. J.: Tailoring tensile ductility of thin film by grain size graded substrates. International Journal of Solids and Structures 166, pp. 124 - 134 (2019)
Liu, C.; Lu, W.; Weng, G. J.; Li, J.: A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 756, pp. 284 - 290 (2019)
Li, J.; Weng, G. J.; Chen, S.; Wu, X.: On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity 88, pp. 89 - 107 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…