Mitra, C.; Lange, B.; Freysoldt, C.: Quasiparticle band offsets of semiconductor heterojunctions from a generalized marker method. Physical Review B 84 (19), 193304, pp. 1 - 4 (2011)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Native and hydrogen-containing point defects in Mg3N2: A density functional theory study. Physical Review B 81, 224109, pp. 1 - 10 (2010)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Point-defect energetics from LDA, PBE, and HSE: Different functionals, different energetics? 1.st Austrian/German Workshop on Computational Materials Design, Kramsach, Tyrol, Austria (2012)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Highly p-doped GaN:Mg! What hinders the thermal drive-out of hydrogen? 2. Klausurtagung des Graduierten Kollegs: Mikro und Nanostrukturen in der Optoelektronik, Bad Karlshafen, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. DPG Frühjahrstagung, TU Dresden, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-groth activation of p-doped Mg:GaN. ICNS-8, Jeju Island, South Korea (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. CECAM Workshop 09: Which Electronic Structure Method for the Study of Defects?, CECAM-HQ-EPFL, Lausanne, Switzerland (2009)
Lange, B.: Limitierungen der p-Dotierbarkeit von Galliumnitrid: Eine Defektstudie von GaN:Mg auf Basis der Dichtefunktionaltheorie. Dissertation, Universität Paderborn, Paderborn, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.